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A new extension of the generalized topological indices (GTI) approach is carried out
to represent “simple” and “composite” topological indices (TIs) in an unified way. This
approach defines a GTI-space from which both simple and composite TIs represent
particular subspaces. Accordingly, simple TIs such as Wiener, Balaban, Zagreb, Harary
and Randić connectivity indices are expressed by means of the same GTI representation
introduced for composite TIs such as hyper-Wiener, molecular topological index (MTI),
Gutman index and reverse MTI. Using GTI-space approach we easily identify math-
ematical relations between some composite and simple indices, such as the relation-
ship between hyper-Wiener and Wiener index and the relation between MTI and first
Zagreb index. The relation of the GTI-space with the sub-structural cluster expan-
sion of property/activity is also analysed and some routes for the applications of this
approach to QSPR/QSAR are also given.

KEY WORDS: graph theory, generalized graph matrix, topological indices, molecular
descriptors, algebraic graph theory

1. Introduction

Topological molecular descriptors, the so-called topological indices (TIs),
have proved to be of great usefulness and effectiveness in molecular design
[1–3]. The main drawback of these descriptors is the lack of a unified way for
their definition. As a matter of comparison all quantum atomic and molecu-
lar descriptors are defined on the basis of the molecular wavefunction. How-
ever, TIs are generally defined through the use of several invariants applied to
different algebraic representation of molecular graphs [4]. The most used of such
representations are the adjacency (A) and distance (D) matrices of the graph
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[4]. Despite the fact that these two matrices are not unrelated [5], the great var-
iability and the ad hoc nature of the structural invariants used to define TIs
gives the impression of a profound lack of unity among all these molecular
descriptors.

In an attempt for unifying some of the best known TIs one of the current
authors introduced the generalized graph matrix, Γ [6]. Using this matrix and
an approach based on a vector–matrix–vector multiplication procedure [7, 8] it
is possible to defined several of the “classical” TIs in an unified way with appli-
cations in structure-property relationships [9–11] and other branches of theoret-
ical chemistry [12, 13]. According to this approach, the adjacency and distance
matrices are particular cases of an infinite set of matrices generated from Γ [6].
At the same time several “classical” TIs, such as Wiener (W) index [14], Bal-
aban J index [15], Harary H indices [16, 17], Zagreb M indices [18] and Randić
(χ ) connectivity index [19] are defined on the basis of the same graph invari-
ant. Some of these indices, such as W , J , H1 and H2 are based on the distance
matrix while the others (M1, M2 and χ ) are based on the adjacency matrix of
the molecular graph. Thus, we propose to designate these descriptors as “sim-
ple” TIs due to the fact that they are based on a single topological matrix. On
the other hand, there are several TIs that should be designated as “composite”
because they are based on invariants that use more than one single matrix in
their definition. These are the cases of descriptors like the Gálvez charge indices
[20], the Molecular Topological Index (MTI) [21] or the hyper-Wiener index [22].
In the first two examples the indices are defined by using both the adjacency and
distance matrices, while the last one is defined on the basis of the distance matrix
and a matrix whose elements are the squares of the distances between pairs of
vertices in the graph. Another index was introduced by Gutman [23] in the con-
text of the Schultz MTI [21] and has been designated as the Gutman molecular
topological index in the Todeschini–Consonni book [24]. It is based on a combi-
nation of the adjacency and distance matrices and deserves the qualification of
“composite” TI. Among these descriptors the Schultz MTI [21] and the hyper-
Wiener indices [22] have received a great deal of attention in both mathematical
and chemical literature [23, 25–29]. In the current work we propose to extend
our Generalized topological indices (GTI) approach to include not only “sim-
ple” but also “composite” TIs, such as MTI and hyper-Wiener index. In doing
such extension we define the GTI-space, from which simple and composite GTIs
are particular subspaces. According to this approach new GTIs can be obtained
by linear combinations of other GTIs, which can explain the relationships pre-
viously found by others between the composite MTI and hyper-Wiener with the
simple Wiener index.
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2. Generalized topological indices

Let G(V, E) be a molecular-graph with |V | = n vertices and |E| = m

edges. Let dij be the entries of the n×n topological distance matrix of the graph
G(V, E). The GTI associated to the graph G(V, E) is defined by the following
vector–matrix–vector formula:

GTI [G] = C

(
p q r

x y z

∣∣∣∣
∣∣∣∣ s

w

)
G

= C uT(G; y, w, q)Γ(G; x, p) v(G; z, s, r), (1)

where C is a constant and u and v are column vectors whose components are
given by

ui(G; y, q)=
⎡
⎣wi +

n∑
j=1

gij (y, 1)

⎤
⎦

q

and vi(G; z, r)=
⎡
⎣si+

n∑
j=1

gij (z, 1)

⎤
⎦

r

. (2)

The Γ matrix is the so-called generalized molecular-graph matrix whose
n × n entries are expressed in terms of the topological distance through

gij (G; x, p) =
⎧⎨
⎩

1, if dij = 1,(
dij x

dij−1
)p

, if i �= j ;dij �= 1,

0, otherwise.
(3)

The vectors w = (w1, w2, . . . , wn) and s = (s1, s2, . . . , sn) contain the
weighting parameters for differentiating heteroatoms in certain TIs, such as the
valence connectivity index. In general, for TIs w = s = (0, 0, . . . , 0) = 0.

From equation (1), each GTI can be written in the following form:

GTI [G] = C

diam(G)∑
k=1

ck η(k) [G], (4)

where diam(G)= max (k) is the diameter of the graph G, i.e. the largest geodesic
(k) in the graph G ,

ck = ck(x, p) = kp xp(k−1) (5)

and

η(k) [G] = 1
2

n∑
i=1

n∑
j=1

〈i, j 〉G �
(k)
ij . (6)

The kth order geodesic (shortest path) matrix �(k)of the graph G is defined
by the following entries:

�
(k)
ij [G] =

{
0, if dij �= k in graph G,
1, if dij = k in graph G.

(7)
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And, each geodesic-bracket 〈i, j〉G is defined by

〈i, j 〉G = 1
2

(
uivj + viuj

)
. (8)

Functions ui(G; y, q)and vi(G; z, r)adopts the form:

ui(G; y, q, w) =
⎡
⎣wi [G] + δi [G] +

diam(G)∑
k=2

k yk−1N
(k)
i [G]

⎤
⎦

q

, (9)

vi(G; z, r, s) =
⎡
⎣si [G] + δi [G] +

diam(G)∑
k=2

k zk−1N
(k)
i [G]

⎤
⎦

r

, (10)

where δi [G] is the classic degree of the ith vertex in the graph G, whereas the
quantity N

(k)
i [G] is the number of vertices at distance k from the ith vertex:

N
(k)
i [G] =

n∑
j=1

�
(k)
ij [G]. (11)

Equation (4) shows that any GTI can be separated in terms of the contribu-
tions of pair of vertices at the same topological distance in the graph. Each η(k)

term defines the contribution to GTI of all interactions between pairs of verti-
ces separated at distance k in the graph. These contributions are scaled by two
real parameters through the ck coefficients. The diameter of the graph is a global
descriptor and its presence in definition (4) reveals the dependence of any GTI
on the “size” of the molecular-graph. On the other hand, the molecular-con-
nectivity relationship among atoms in the molecule defines the “shape” of the
molecular graph. This “shape” is coded by the so-called geodesic-brackets (see
equation 8). Equations (9) and (10) show that the functions u and v are the gen-
eralization of the “classic” vertex degree notion. Through these functions u and
v and by settling the x and p parameters, a pair of weights is assigned to each
vertex in the graph. On each vertex these weights code the topological environ-
ment around it. From the previous analysis, it is clear that the codification of the
topological complexity of any molecular-graph relies on the N

(k)
i [G] quantities,

defined by equation (11).

3. GTI-space and “simple” TIs

The set of all GTI forms a non-linear real space of functions depending
on (2n + 6) parameters: the scalars x, y, z, p, q, r and components of w =
(w1, w2, . . . , wn) and s = (s1, s2, . . . , sn) vectors. This space will be termed
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the GTI-space. An important subspace of this space is formed by the “classic”
topological indices. From (1), it is straightforward to obtain several of the well-
known classical indices. For instance, the Zagreb indices, M1(G) and M2(G); the
Randić connectivity index, χ(G); the Wiener index, W(G), the Balaban J (G)

and the Harary numbers H1(G) and H2(G), which will be designated as Hk(G),
are expressed as follow:

M1 [G] =
(

1 1 0
0 0 0

)
G

, (12)

M2 [G] = 1
2

(
1 1 1
0 0 0

)
G

, (13)

χ [G] = 1
2

(
1 −1/2 −1/2
0 0 0

)
G

, (14)

W [G] = 1
2

(
1 0 0
1 1 1

)
G

, (15)

J [G] = 1
2B

(
1 −1/2 −1/2
0 1 1

)
G

, where B = m/(m − n + 2) , (16)

Hk [G] = 1
2

(
k 0 0
1 1 1

)
G

. (17)

For the sake of simplicity we have used the following compact symbol when w =
(0, 0, . . . , 0) = 0 and s = (0, 0, . . . , 0) = 0:

(
p q r

x y z

∣∣∣∣
∣∣∣∣ 0

0

)
G

=
(

p q r

x y z

)
G

. (18)

4. GTI-space and “composite” TIs

The first composite index that we will analyse here is the one introduced by
Gutman in the context of the MTI [23]. It was originally defined on the basis of
the adjacency and distance matrices as follows:

SG (G) =
∑

i

∑
j

(ADA)ij =
∑

i

∑
j

δiδj dij . (19)
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This index can be simply written in the context of GTI as follows:

SG [G] =
(

1 1 1
1 0 0

)
G

. (20)

On the other hand, the Schultz MTI (G) [21] was originally defined as follows:

MTI (G) =
∑

i

[(A + D) v]i , (21)

where v is the column vector of vertex degrees. MTI can be defined in the con-
text of the GTI approach as follows:

MTI (G) =
(

1 1 0
0 0 0

)
G

+
(

1 1 0
1 0 0

)
G

. (22)

Schultz and Schultz defined a reciprocal MTI, which is based on the matrix
of reciprocal topological distances RD [30]:

RMTI (G) =
∑

i

[(A + RD) v]i . (23)

This index is expressed as follows in the GTI context:

RMTI (G) =
(

1 1 0
0 0 1

)
G

+
(−1 1 0

1 0 1

)
G

. (24)

Finally, we will consider the hyper-Wiener index introduced by Randić [22]
and generalized by Klein et al. [25]. According to the general definition of this
index [25]:

WW (G) = 1
4

∑
i

∑
j

(
d2
ij + dij

)
(25)

Thus, it is easy to see that it can be expressed using the generalized graph
matrix as follows:

WW (G) = 1
4

(
1 0 0
1 1 1

)
G

+ 1
4

(
2 0 0
1 1 1

)
G

. (26)

In this section, we have been able to express several composite TIs in
terms of the GTI approach. Accordingly, all these composite TIs are not only
expressed in an unified way but also they are expressed using the same algebraic
expressions as for the simple TIs, which indicates a direct route for the general-
ization of both types of descriptors.
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5. Generalization of “simple” and “composite” TIs

From the previous results, we postulate a new class of GTI defined by:

GTI [G] = CuT(G; y, w, q)

[∑
i=1

γ ′
i Γ(G; xi, pi)

]
v(G; z, s, r), (27)

where γ ′
i is a coefficient modifying the generalized graph matrices. Thus, for a

given set of parameters y, z, q, r and components of w = (w1, w2, . . . , wn) and
s = (s1, s2, . . . , sn) vectors, we obtain

GTI [G] =
∑
i=1

γi

(
uT(G; y, w, q)Γ(G; xi, pi) v(G; z, s, r)

)
, (28)

where γi coefficients contain the information of both C andγ ′
i . Equation. (28)

can be written in the equivalent form:

GTI [G] =
∑
i=1

γi GTIi[G], (29)

where

GTIi[G] = uT(G; y, w, q)Γ(G; xi, pi) v(G; z, s, r). (30)

Equation (28) defines a linear subspace of GTIs. Accordingly, these “composite”
TIs are linear combinations of other “simple” descriptors. Lets take, for instance,
the expression (22) defining MTI in the context of the GTI-space. It is evident
that the first bracket of this expression corresponds to the expression of the
Zagreb M1 index given by expression (12). The second bracket can be expressed
as follows:

S(G) =
(

1 1 0
1 0 0

)
G

= vDuT =
n∑

i=1

n∑
j=1

δidij . (31)

This index was originally defined by Müller et al. [31] and by Mihalic et
al. [32] and called MTI’ index. Thus, using Zagreb M1 and S(G) we arrive to
the conclusion that MTI = M1 + S, which was previously derived by Gutman
[23] (see that in Gutman paper [23] as well as in Todeschini–Connsoni book [24]
the M1 is designated as M2, which can produce some confusion with the second
Zagreb index).

In the case of the hyper-Wiener index it is easy to identify the first bracket
as the Wiener index and the second one as the sum of the squared distances
in the graph, which is known as the unnormalized second moment of distances,
D2. Then, it is obvious that WW = 1/2 (W + D2) as previously recognized by
Klein et al. [25]. Thus, it is evident from the previous results that the GTI-space
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approach permits to find mathematical relations between TIs. Of course, the
further exploration of other GTI-space properties (metric, topological, etc.) will
make possible the discovery of new and unnoticed relationships between these
descriptors.

6. GTI-space: some routes to applications

One of the most important advantages that the use of the GTI offers to
develop QSAR/QSPR models is the possibility of optimizing TIs to describe a
particular property, P [9–12]. Saying it in other words, TIs are ad hoc molecu-
lar descriptors which are not optimal for describing a particular property/activ-
ity. They correspond to an initial “configuration” of the GTI parameter space
that need to be optimized to describe P in an optimal way. A full analogy can be
found with the use of quantum chemical molecular approaches where an optimal
geometry is searched for minimizing the energy of the molecule. Here, the initial
atomic coordinates are the non-optimal set of parameters which are optimized
to minimize the molecular energy. Thus, the optimization of the GTIs consists in
finding the best set of parameters that minimize the error in predicting a prop-
erty/activity under study. For the sake of simplicity we consider here a linear
model relating the property P and the GTIs:

P [G] =
∑
i=1

γi GTIi[G] + Error. (32)

Here, we can consider the coefficients γi of the GTI as the coefficients of
the regression model, which means that the linear combination of GTIs obtained
for describing a specific property/activity is also a GTI:

P [G] − Error = GTI [G] =
∑
i=1

γi GTIi[G]. (33)

This approach, which considers a “topological function” as a new TI, has
been previously used in the literature, in particular by considering a linear discri-
minant function based on TIs as a “super-TI” to discriminate/predict other bio-
logical activities [33].

On the other hand, we have previously shown that the GTIs can be
expressed as linear combinations of substructures ξ of the graph G, f (G, ξ),
which permits to write the expression (32) as a sub-structural cluster expansion
of the form [34, 35]:

P [G] =
⊆G∑
ξ

Pf (ξ) f (G, ξ), (34)
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where the parametric coefficients Pf (ξ) depend exclusively on the GTI coeffi-
cients γi and f (G, ξ) depends solely on the way in which the sub-structures
embed in the graph.

7. Concluding remarks

One of the most important targets in science is the development of theories
and approaches explaining (apparently) diverse phenomena in an unified way.
The best known example is the unified field theory, which is an attempt to unify
all the fundamental forces and the interactions between elementary particles into
a single theoretical framework. In a much modest level the current approach pre-
tends to represent several disparate mathematical representations of a discrete
object in an unified formulation. There is both theoretical and practical appeal
for atempting the unification of TIs under a common umbrella of a generalized
graph approach. On the first side, the generalized approach represents a conden-
sation of great part of the knowledge about topological molecular invariants in
a formal way. This permits to understand the nature of these descriptors, their
interrelationships and structural interpretation in a better way than by study-
ing TIs on a one-by-one basis. On the practical side, the GTI-space permits the
optimization of the TIs to describe a property/activity in a most efficient way
than the unoptimized descriptors which have been introduced in an ad hoc way.
The facilities offered by the current approach to identify mathematical relation-
ships between TIs, which are further translated into intercorrelations between
such indices, permit to avoid the unnecessary proliferation of “new” topological
descriptors. We hope that the further exploration of algebraic, metric and topo-
logical properties of GTI-space will open new avenues in chemical graph theory.
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